skip to main content


Search for: All records

Creators/Authors contains: "Hong, N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sreenivasan, S.V. (Ed.)
    A roll-to-roll (R2R) technique is especially desirable for transfer of chemical vapor deposition (CVD) graphene towards high-speed, low-cost, renewable, and environmentally friendly manufacturing of graphene-based electronic devices, such as flexible touchscreens, field effect transistors and organic solar cells. A R2R graphene dry transfer system is recently developed. Monolayer graphene is transferred from a copper growth substrate to a polymer backing layer by mechanical peeling. In this work, we present an experimental study to examine the effects of line speed of the mechanical peeling process on the transferred graphene quality. It is shown that the effect of line speed is not monotonic, and an optimal speed exists to yield the highest and most consistent electrical conductivity of transferred graphene among the process conditions studied. This study provides understanding of process parameter effects and demonstrates the potential of the R2R dry transfer process for large-scale CVD graphene toward industrial applications. 
    more » « less
  2. We experimentally demonstrate the direct strong coupling between theS0→<#comment/>S1absorption transition of rhodamine 6G (R6G) dye molecules and the surface plasmon polaritons of a hyperbolic metamaterial (HMM) substrate. The surface plasmon mode was excited by a guided mode of the R6G-doped polymer thin film on the HMM. The coupling strengths of the interactions between the surface plasmon and two molecular exciton modes are greater than the average linewidths of the individual modes indicating a strong coupling regime. This is the first, to the best of our knowledge, experimental demonstration of the direct strong coupling between the resonance mode supported by the HMM and the dye molecules on the HMM surface, not embedded in the HMM structure. The study may provide the foundation for the development of novel planar photonic or electronic devices.

     
    more » « less